
EUROGRAPHICS 2025 / A. Bousseau and A. Dai
(Guest Editors)

COMPUTER GRAPHICS forum
Volume 44 (2025), Number 2

Learning Image Fractals
Using Chaotic Differentiable Point Splatting

A. Djeacoumar , F. Mujkanovic , H.-P. Seidel , T. Leimkühler

Max-Planck-Institut für Informatik, Saarbrücken, Germany

64x 64x

1x 1x 1x 1x 1x

64x 64x 64x

Super-resolutionOurs Ground Truth EvolutionaryLearning Fractals

Figure 1: We introduce a novel method to recover a fractal description from an image containing a self-similar shape. Our hybrid optimization
achieves state-of-the-art fractal inversion, enabling the synthesis of intricate details at any desired scale – illustrated here with 64x zoom-ins.

Abstract
Fractal geometry, defined by self-similar patterns across scales, is crucial for understanding natural structures. This work
addresses the fractal inverse problem, which involves extracting fractal codes from images to explain these patterns and synthesize
them at arbitrary finer scales. We introduce a novel algorithm that optimizes Iterated Function System parameters using a custom
fractal generator combined with differentiable point splatting. By integrating both stochastic and gradient-based optimization
techniques, our approach effectively navigates the complex energy landscapes typical of fractal inversion, ensuring robust
performance and the ability to escape local minima. We demonstrate the method’s effectiveness through comparisons with
various fractal inversion techniques, highlighting its ability to recover high-quality fractal codes and perform extensive zoom-ins
to reveal intricate patterns from just a single image.

CCS Concepts
• Computing methodologies → Point-based models; Rendering; Machine learning;

1. Introduction

The geometry of nature is often fractal [Man82]: Structures repeat
themselves across different scales, forming self-similar patterns. A
classic example is a fern, where each branch resembles both the
overall fern structure and its smaller sub-branches (Fig. 2). Simi-

lar observations can be made for coastlines, terrains, trees, river
networks, blood vessels, etc. Such intricate patterns can be ex-
plained by the repeated application of simple rules, referred to
as fractal codes. Knowledge of underlying fractal codes is es-
sential not only for describing and understanding complex sys-

2025 Authors version of paper published in Computer Graphics Forum (Eurographics 2025).
© The Authors.

https://orcid.org/0009-0008-1919-450X
https://orcid.org/0009-0009-9122-4408
https://orcid.org/0000-0002-1343-8613
https://orcid.org/0009-0006-7784-7957

2 of 14 A. Djeacoumar et al. / Learning Image Fractals Using Chaotic Differentiable Point Splatting

tems [Man82, HBG∗95, Tur97, SHM05, Man97] but also as an ef-
fective means of data compression [Jac92, Fis94]. In this work, we
develop a novel method for extracting fractal codes from an image
containing a self-similar pattern using modern differentiable point
splatting [KKLD23].

The fractal inverse problem – finding fractal codes that generate
a given geometry – is a long-standing formidable challenge [Bar88]
and typically framed as an optimization problem [Vrs91, CLV∗95,
TCCC23]. This presents two key challenges.

Figure 2: A fern exhibit-
ing self-similarities.

First, both the large-scale recur-
sive application of fractal codes and
the rendering of high-quality images
are computationally demanding, es-
pecially within an iterative optimiza-
tion framework. We observe that
large-scale fractal synthesis, i.e., re-
cursively executing fractal codes hun-
dreds of thousands of times per im-
age, and well-designed rendering, in-
cluding proper anti-aliasing, are both
essential for achieving high-quality
inversion results. While computer
graphics research has explored the
efficient forward rendering of frac-
tals over the past few decades [Car80,
HD91, Mar10, dSNLV21], there has been limited focus on improv-
ing efficiency in the inverse setting. To address this gap, we in-
troduce a highly efficient parallel fractal generator, paired with a
custom differentiable renderer. Specifically, we propose a model
that optimizes the parameters of an Iterated Function System
(IFS) [Hut81] to produce a point set that is differentiably raster-
ized [ZPVBG01, KKLD23]. Our model enables scaling up fractal
synthesis to a quality level that facilitates state-of-the-art fractal
inversion results.

The second key challenge in fractal inversion is the low dimen-
sionality of the parameters, which results in highly non-convex
objective energy landscapes that are notoriously difficult to navigate.
To address this challenge, stochastic optimization techniques, such
as evolutionary algorithms [NG94, QIG17], have been employed.
While these methods are effective at escaping local minima, they
often follow inefficient optimization trajectories. In a different line
of work, gradient-based optimization has been explored to solve the
fractal inverse problem [MP98, VS99, TCCC23, BN24]. Gradients
provide a strong guiding signal that enhances efficiency, but they
are inherently prone to converging to local minima. In this work,
we make the observation that leveraging the synergies between
stochastic and gradient-based techniques significantly outperforms
all previous methods in solving the fractal inverse problem. Our
optimization employs an interleaved scheme that alternates between
gradient descent [KB15] and simulated annealing [KGJV83], ensur-
ing stable optimization trajectories while maintaining the ability to
escape local minima.

Our approach recovers high-quality fractal codes from images.
The key property of these codes is their ability to synthesize highly
detailed patterns with virtually infinite resolution. These generative
modeling capabilities allow for extreme zoom-ins on the original

image, revealing intricate self-similarities and complex structures
at any scale (Fig. 1). We conduct extensive comparisons with both
classical and modern fractal inversion techniques, demonstrating the
clear superiority of our method.

In summary, our contributions are:

• A novel, highly efficient image fractal inversion technique based
on differentiable point splatting.

• An effective optimization routine that relies on synergies between
stochastic and gradient-based optimization.

• State-of-the-art fractal inversion results alongside an in-depth
analysis of the proposed algorithm and its components.

2. Related Work

2.1. Fractals

Fractals are complex geometric patterns that repeat infinitely at dif-
ferent scales, revealing self-similarity through recursive or iterative
processes [Man80,Man82,PJSF04]. Fractal geometry is not only cru-
cial in many scientific disciplines [HBG∗95,Tur97,SHM05,Man97],
but it has also been applied to the study of natural images [Pen84,
TPRC00] and visual art [RHD08], and is an indispensable tool for
synthetic scene creation [DHN85, BJM∗88, Ebe02, TGSC24].

A wide variety of algorithms for creating fractals and self-
similarities exists. Grammar-based techniques use formal rules to
iteratively generate complex structures [Lin68, RS80] with diverse
applications [SRDT01, WWSR03, PL12]. Noise-based approaches
combine random functions at different scales [MVN68, Kes82].
Escape-time algorithms generate fractals by iterating a function
at each point until it escapes a boundary [MEG04, Jul18]. Fur-
thermore, self-similarity can be achieved by tiling [Ban91, Fat01,
OCNG21, CZHN22]. We build our approach on Iterated Function
Systems, which generate fractals by repeatedly applying a set of ge-
ometric transformations [Hut81, BD85, Bar88, Elt87]. This method,
which we review in Sec. 3, is well-suited for point-based render-
ing [TCCC23, BN24] and has recently been shown to combine
effectively with other fractal generation paradigms [SK24].

Fractals have also been studied in 3D [HSK89, Nor82], where
efficient rendering is crucial [Car80, HD91, Mar10, dSNLV21]. Sim-
ilarly, our optimization scheme relies on efficient synthesis and
rendering to produce high-quality fractal images – a property we
found essential for achieving state-of-the-art inversions.

Our approach incorporates a deep differentiable pipeline. Fractals
have been integrated into deep learning in various ways, such as
through self-similar architectures [LYMF19], reframing computa-
tions as neural networks [Sta91], deep equilibrium models [BKK19],
and training data augmentation [KOM∗20, AF22].

2.2. Fractal Inversion and Procedural Modeling

Obtaining fractal codes from an image is a notably intricate pro-
cess [BEHL86,Bar88,Vrs91]. Since direct methods are only feasible
for simple synthetic cases [Ber97, SDG∗93], the task is generally
formulated as an optimization problem. Stochastic techniques have
been explored to address the highly non-convex energy landscapes
involved. These include evolutionary algorithms optimizing the

2025 Authors version of paper published in Computer Graphics Forum (Eurographics 2025).
© The Authors.

A. Djeacoumar et al. / Learning Image Fractals Using Chaotic Differentiable Point Splatting 3 of 14

fractal code directly [LVL93, NG94, Lan95, GCI00], a partition-
ing of the fractal [SB06], or a polar reparameterization [CLRS00].
Similarly, swarm intelligence algorithms solve the problem by mod-
eling stochastic natural processes [QIG17, GI18, GID∗21]. Addi-
tionally, quadratic programming [FV94] and expectation maximiza-
tion [BdR17] have been applied to solve this task.

In a separate line of research, gradient-based approaches have
been explored [VS99]. Differentiability has been achieved by us-
ing point set distances [MP98], moments [VR89, RZ94], signed
distance functions [Kim15], and, recently, differentiable point
splatting [TCCC23, BN24, Sco24]. Additionally, experiments have
been conducted on directly regressing fractal codes using neural
networks [GD21]. The approach most similar to ours is that of
Tu et al. [TCCC23]. However, unlike their focus on representing
low-resolution images with points arising from an Iterated Function
System, we aim to recover infinite-resolution fractal structures. To
achieve this, we utilize high-quality renderings produced by an effi-
cient forward model, along with a hybrid optimization framework
to prevent getting stuck in local minima.

In addition to applications in data compression [Jac92, BH93,
Fis94] and symmetry detection [LHOK∗10, LSS∗17], discovering
self-similarities has also been studied as a powerful tool for gener-
ative modeling [PXM∗22, KRWM22, ZWSW23, Mer23]. Inverse
procedural generative models have been studied in various forms,
including tiling [VSLD13], noise models [GSV∗14, HN18], hand-
crafted spatial patterns [LP00], handcrafted material-specific pro-
cedures [GHYZ20], and both fixed [HDR19, SLH∗20] and learn-
able [HHD∗22] procedural node graphs. However, to our knowledge,
little to no inverse procedural models generate details at infinite
scales, thus most of them lose detail when magnifying way past the
scale of the reference image. In contrast, in our work we learn a
generative model that automatically extrapolates the target structure
from a single scale to infinitely finer scales, constituting a significant
advantage for infinite-resolution image synthesis.

2.3. Multiscale Image Representation and Reconstruction

Representing, synthesizing, and reconstructing images at multiple
scales is a fundamental task in computer graphics and computer
vision.

Coarser representations of an image can be formalized using lin-
ear scale-space theory [Iij59, Wit87] and efficiently implemented
using pyramids [Bur81, Wil83]. In recent years, neural multiscale
representations have gained significant attention [FSWK20,CLW21,
PNS∗22,LVVPW22,STB∗22,MESK22,BGF∗23,MNT∗24]. In con-
trast to our approach, all these approaches assume that a maximum
resolution exists and a corresponding image is available. However,
we leverage image pyramids as part of our multiscale supervision
structure.

The reverse task, inferring finer-scale images from coarser ones,
is an active area of research in the super-resolution community.
For an overview, we refer to a recent survey [MRF∗23]. Similar
to our setting, the internal statistics of an image in the form of
recurring patches has been studied [SI07, ZI11] to increase resolu-
tion [GBI09, SCI18, BKSI19], remove blur [MI14], or synthesize
new layouts [SDM19, SBII19, ZZB∗18]. Unlike these methods, we

100 points 2000 points 5M points

Figure 3: An IFS fractal generated using the chaos game (Eq. 2)
with varying numbers of points.

model self-similarity using analytic functions. This results in a nar-
rower application domain, but enables image synthesis without scale
limits.

Another approach to obtaining a multiscale representation is
to fuse images from different scales. This is often done with
an understanding of how the source images are related to each
other [KHE∗10, HMK∗19, MAAB∗17, TLW∗19, LFS21], but un-
structured image collections have also been explored [WDJ∗24].
In contrast, our approach takes a single image as input and infers
generative rules to synthesize infinite-resolution details.

2.4. Point Splatting

Point-based rendering has a long and rich history [GP11]. Early work
focused on efficient hardware-accelerated point samples [GD98],
while advancements in “splatting” reconstruction kernels, such
as EWA [ZPVBG01], enabled high-quality image synthesis free
from aliasing. The emergence of differentiable visual comput-
ing [Li19, SZR∗23] has further advanced this field, with soft re-
construction kernels facilitating the solution of inverse problems
through differentiable point splatting [WGSJ20, YSW∗19, LZ21].
A notably efficient implementation of this approach is 3D Gaus-
sian Splatting (3DGS) [KKLD23], which marks the current state of
the art in scene reconstruction from images. We adapt their splat-
ting framework to recover 2D fractals and pair it with a stochastic
optimization routine.

Similar to our work, 3DGS-based reconstruction has been treated
as a stochastic process [KRS∗24], akin to Stochastic Gradient
Langevin Dynamics [BDM18]. However, we demonstrate that mere
gradient perturbations are insufficient to obtain high-quality fractal
inversions.

3. Background

Here, we briefly review the concept of Iterated Function Systems
(IFS) [Hut81, BD85] that implicitly define fractal geometry through
the repeated application of geometric transformations. Since this

2025 Authors version of paper published in Computer Graphics Forum (Eurographics 2025).
© The Authors.

4 of 14 A. Djeacoumar et al. / Learning Image Fractals Using Chaotic Differentiable Point Splatting

work focuses on image fractals, we restrict our exposition to the
2D domain. For a comprehensive introduction, we refer to Barns-
ley [Bar88].

An IFS fractal code F = {(fi, pi)}N
i=1 is a set of N continuous

functions fi ∈R2 →R2, each with an associated probability pi ∈
[0,1], where ∑i pi = 1. Each function fi deterministically moves
a point at location x to a new location fi(x) and is required to be
contractive, i.e.,

∥ fi(x1)− fi(x2)∥2 < ∥x1 −x2∥2 ∀x1,x2 ∈R2. (1)

Based on this construction and starting from an arbitrary initial point
x0, a sequence of points xk can be generated using the “chaos game”

xk+1 = fπk (xk), (2)

where the index πk is randomly selected from the set {i}N
i=1, with the

probability of choosing index i given by pi. It can be shown [Hut81,
BD85] that the sequence xk obtained through this Markov process
converges to a compact set A⊂R2, the attractor of F . The attractor
A acts as a unique fixed point solely determined by the functions
fi, i.e., once a point xk enters A, subsequent applications of F
will cause the points to jump around within A, but they will never
leave it again. Accumulating all points xk effectively leads to an
increasingly dense coverage of A (Fig. 3). The probabilities pi do
not affect the shape of A; they only influence the convergence rate of
the chaos game by modulating local point densities and are typically
derived from the determinants of fi [TCCC23, AF22]. Importantly,
A is a fractal by construction, as it consists of a union of (distorted)
copies of itself [BD85]. Henceforth, we will refer to sequences xk
as trajectories.

The above exposition holds for any continuous and contractive
functions fi [CLV∗95]. However, in this work we follow standard
practice [BEHL86, GCI00, GD21, TCCC23] and restrict ourselves
to affine functions of the form

fi(x) = Mix+bi, (3)

with Mi ∈R2×2 and bi ∈R2.

The fractal inverse problem can now be stated more precisely:
Given an input image Iref depicting a (fractal) shape, find an IFS
fractal code F whose attractor A matches that shape. Once F is ob-
tained, the shape can be re-synthesized at virtually infinite resolution
by rendering points generated through the chaos game.

4. Method

Chaos is a friend of mine.
– Bob Dylan

The input to our algorithm is a binary or grayscale image Iref, rep-
resenting a (fractal) shape of finite resolution or bandwidth, e.g.,
a raster image. Without loss of generality, we assume the shape is
centered within Iref and padded by 25% of the image’s dimensions.
Our goal is to find an IFS code F , such that when the chaos game
from Eq. 2 is applied, the resulting attractor A closely approximates
the shape depicted in Iref. Since A is a fractal, we can use F to

Differentiable
Point Splatting

Fractal Image

Point GenerationWarm-up

... ...
...

... ...
...

... ...
...

Fractal Point Generator

N
or

m
al

iz
at

io
n

FunctionPoint Concat. Stochastic Element

Figure 4: Overview of our model. The fractal point generator uses
functions in F and employs a parallel stochastic scheme to effi-
ciently and robustly execute the chaos game (Eq. 2). The generated
points are then rendered into an image using differentiable splatting.

render highly detailed, zoomed-in views at any scale, effectively
surpassing the resolution limitations of Iref by an arbitrary amount.

We frame our task as an optimization problem over a set of affine
functions { fi}N

i=1 (Eq. 3), where the number N of functions is set
to a fixed conservative estimate. As shown in Fig. 4, our model
consists of two components. The first component is a fractal point
generator, which runs the chaos game to generate a large point set
P = {xk} that densely covers and thereby defines A. To effectively
incorporate this point generator into an optimization framework,
we need to implement measures to improve efficiency and avoid
overfitting to specific point trajectories, as detailed in Sec. 4.1. The
second component is a point splatting module, which differentiably
rasterizes the points from the first component into an image. This
process is described in Sec. 4.2. Our model enables the formulation
of an objective function in image space, which we minimize using a
hybrid iterative optimizer that specifically addresses local minima
via additional stochasticity, as outlined in Sec. 4.3.

4.1. Fractal Point Generator

The purpose of this stage is the generation of points on the attractor
A via the chaos game. We observed that achieving high-quality and
stable results requires a large number of points, typically |P| ≈
500k in practice. Therefore, evaluating Eq. 2 recursively for each
optimization iteration is (i) highly inefficient because of the lengthy
computation sequence, and (ii) unstable due to the need for gradients
to flow through such an ultra-deep pipeline.

To address this issue, we use a generator that runs b trajectories of
length l in parallel (rows in Fig. 4, left). Each trajectory is initialized
with a uniformly sampled random point x0. Then, following Eq. 2,
we apply a sequence of transformations fi, randomly sampled from
an uniform distribution to generate the point trajectories. Since x0
does not generally lie on A, we treat the first m iterations as a
warm-up phase, allowing the trajectory to converge onto A. After
this warm-up, we begin concatenating the generated points from all
trajectories into a large buffer.

In each optimization iteration, our parallel pipeline samples b

2025 Authors version of paper published in Computer Graphics Forum (Eurographics 2025).
© The Authors.

A. Djeacoumar et al. / Learning Image Fractals Using Chaotic Differentiable Point Splatting 5 of 14

Table 1: Sources of stochasticity in our framework, along with their
granularities, i.e., the levels at which random numbers are drawn.

Component Source of Stochasticity Granularity

Model
Point Initialization Trajectory
Function Selection Point

Optimizer Simulated Annealing Opt. Iteration

from the Nl possible combinations of fi, producing trajectories that
start from randomly initialized positions x0. This approach greatly
helps the optimization focus on matching the attractor shape using
the IFS rather than overfitting it using specific trajectories. Tab. 1
provides a list of all sources of stochasticity in our point generation
pipeline, along with their respective sampling granularities.

After generating all the points, we normalize them by applying
a global uniform scaling and offset to center the point cloud and
achieve the 25% padding assumed for the shape in the input Iref.

Parameterization Our affine functions fi, as defined in Eq. 3, must
satisfy two key properties: (i) They must be contractive, i.e., Eq. 1
needs to hold, and (ii) they should be appropriately constrained
to prevent divergence during the highly stochastic optimization
process. To achieve this, we design a custom parameterization for
the matrices Mi and offsets bi.

We parameterize Mi using the singular value decomposition
(SVD) Mi =UiSiV T

i , with Ui,Si,Vi ∈R2×2. The diagonal matrix Si
contains the non-negative singular values of Mi. Each singular value
is represented by a freely optimizable parameter to which a sigmoid
function is applied, ensuring contractivity. The orthonormal matri-
ces Ui and Vi are represented by four optimizable parameters each,
corresponding to their individual matrix entries. After each optimiza-
tion iteration, Ui and Vi are projected onto the nearest orthonormal
matrices using the Gram-Schmidt process [CBG∗17], ensuring that
the decomposition remains a valid SVD. Note that this represents
an over-parameterization of Mi – with 10 optimizable parameters
for a 2× 2 matrix. The offset bi ∈ R2 is parameterized using a
freely optimizable 2D vector, with the parameters passed through
the hyperbolic tangent function. This ensures that offsets remain
within the range [−1,1]. We refer to the optimizable parameters of
our model collectively as θ ∈R12N .

In contrast to recent observations in previous work [BN24,Sco24],
we discovered that our pipeline is insensitive to parameter initializa-
tion. Therefore, we use a straightforward uniform random initializa-
tion of θ.

4.2. Differentiable Point Splatting

To enable learning fractals from images, we differentiably rasterize
the point set P generated in the previous stage into an image I.
Each point is splatted as an isotropic 2D Gaussian [ZPVBG01]
using standard alpha blending [PD84]. For efficiency, we employ a
tile-based rasterization pipeline [KKLD23].

Splatting a stochastic approximation of an infinite-resolution frac-
tal onto a finite-resolution image introduces challenges related to

aliasing. We address this issue with super-sampling. Specifically, we
splat the points into an image with a spatial resolution that is 5×5
higher than the input image Iref, using Gaussian splatting kernels
with a standard deviation of 2.5 pixels. This is followed by averaging
downsampling to the target resolution to arrive at our final output I.
Through a parameter grid search, we found this combination of splat
size and super-sampling factor to be an effective balance between
detail preservation, anti-aliasing, gradient flow, and efficiency.

4.3. Optimization

With our differentiable forward model established, we design an
optimization algorithm to recover the fractal codes. Specifically, we
optimize for the parameters θ of the IFS to generate an attractor
image I that closely matches the input image Iref.

Objective Function Our image-space objective function consists of
four terms, addressing individual aspects of the problem setting:

L= λMSELMSE +λSSIMLSSIM +λLPIPSLLPIPS +λregLreg, (4)

where λi ∈R+ are corresponding weighting factors. The first term,

LMSE = ∑
k
∥mipk (I)−mipk (Iref)∥2

2 , (5)

evaluates the reconstruction across a range of scales using image
pyramids [Bur81,Wil83], where mipk denotes the k’th linear MIP
map level. The terms LSSIM and LLPIPS assess the error between I
and Iref using the D-SSIM [WBSS04] and LPIPS [ZIE∗18] metrics,
respectively, promoting the alignment of overall shape structure.
Although the LPIPS metric has been specifically trained to eval-
uate natural images, we found that LLPIPS significantly improves
inversion results. This aligns with recent findings suggesting that pre-
training neural networks with fractals is effective [KOM∗20, AF22].

Finally, we found that an additional regularization in the form of

Lreg =
N

∑
i=1

σ
2
i,1 +σ

2
i,2 +∥bi∥2

2 +λcond

(
σi,1 +1
σi,2 +1

−1
)2

(6)

is essential for stable optimization, where σi, j is the j-th singular
value of Mi that can be read off directly from Si. While the singular
values σi, j and offsets bi are already constrained using saturating
functions, we found that the optimization often drives them into the
saturation region, leading to unfavorable dynamics. The first three
summands of Eq. 6 address this issue by encouraging these values
to remain as small as possible. The last summand in Eq. 6 utilizes
a stable approximation of the condition number of Mi, helping to
prevent singular matrices, which appear as streaks in the rendered
fractal.

We set λMSE = 10, λSSIM = 1, λLPIPS = 2, λreg = 10−2, and
λcond = 10 in all our experiments.

Hybrid Optimizer While our pipeline allows to compute ∇θL us-
ing automatic differentiation, we found that a pure gradient-based
optimizer does not lead to satisfactory results. This is due to the com-
plex, recursive generation process, which is driven by a relatively
small set of variables θ that all have a global impact. As a solution,
we employ a hybrid iterative optimization strategy that alternates
between gradient descent and simulated annealing [KGJV83]. The

2025 Authors version of paper published in Computer Graphics Forum (Eurographics 2025).
© The Authors.

6 of 14 A. Djeacoumar et al. / Learning Image Fractals Using Chaotic Differentiable Point Splatting

gradient descent component provides a stable path toward lower-
energy states, while the simulated annealing component helps escape
local minima.

Throughout the optimization, we maintain a “temperature” pa-
rameter τ that decreases linearly from 1 to 0. Gradient descent is
implemented using the Adam optimizer [KB15] with a fixed learn-
ing rate of 10−2 and default parameters otherwise. After every 250
iterations of gradient descent, we save the current parameters, de-
noted as θcurr, along with the current energy, denoted as Lcurr, and
switch to a phase of simulated annealing. In this phase, we suc-
cessively sample 10 new parameter candidates θcand = θcurr +∆θ,
where perturbations ∆θ ∼ N (0, τ/5) are drawn from an isotropic
normal distribution. The corresponding energy Lcand is then eval-
uated. A candidate θcand is accepted as the new state θcurr with an
acceptance probability

p(θcand) = min
(

exp
(
−10 · Lcand −Lcurr

τ

)
,1
)
. (7)

This approach allows the optimization to occasionally move to a
higher-energy state, helping to avoid getting trapped in local minima.
After each simulated annealing phase, we switch back to a gradient
descent phase, resetting the momentum of the Adam optimizer. This
alternating scheme continues for the first half of the total optimiza-
tion iterations, after which we stay in the gradient descent phase
until completion.

4.4. Implementation Details

We implemented our framework in PyTorch [PGC∗17], using cus-
tom CUDA kernels for the point splatting module. Our source
code, fractal data, and supplemental materials are available at
https://chaotic-fractals.mpi-inf.mpg.de.

Our point generator creates point sets P using b = 2000 trajec-
tories in parallel, each with a length of l = 250 points. Using a
warm-up phase of m = 10 iterations, this results in 480k points per
optimization iteration. We found that this set of hyperparameters
generates sufficient points for our optimization; using more points
did not enhance inversion results. For rendering, we adapted the
differentiable rasterization pipeline from Kerbl et al. [KKLD23] to
enable efficient splatting of isotropic 2D kernels. As our approach
does not require any sorting of primitives, the asymptotic complex-
ity of splatting reduces from O (|P| · (c+ log |P|)) to O (|P| · c)
compared to the original implementation, where c is the number of
pixels in I. We use a resolution of 1024×1024 pixels for Iref and I
in all our experiments. A full optimization requires 15k iterations.
We provide the pseudocode of our optimization algorithm in the
Appendix A.

5. Evaluation

We evaluate our approach by comparing it against a wide range of
baselines (Sec. 5.1), presenting additional results (Sec. 5.2), and
performing ablation studies (Sec. 5.3). Finally, we discuss the limi-
tations of our method (Sec. 5.4).

By default, fractals for visualization and evaluation are generated
with 50 million points per view and a supersampling rate of 8×8.
To accelerate convergence, our point generator samples fi based on

Table 2: Timing breakdown per iteration of our approach on two
different GPU models. During optimization, we employ differen-
tiable point splatting, whereas for evaluation, we use hardware-
accelerated point rendering with 100x more points.

Component
Optim. (500k pts.) Eval. (50M pts.)

A40 RTX 3090 A40 RTX 3090

Generation 99.5 ms 158.9 ms 4.7 s 5.2 s
Rendering 1.2 ms 1.4 ms 0.1 s 0.1 s
Sim. ann. 2.0 ms 2.7 ms – –
Backward 116.6 ms 128.2 ms – –

probabilities proportional to their respective determinants [AF22,
TCCC23]. Since differentiability is not necessary for evaluation,
we use a basic hardware-accelerated point renderer implemented
with PyOpenGL. For certain combinations of zoomed-in views and
IFS codes, achieving a point count of 50 million can be difficult or
impossible, as it may be highly unlikely for points to fall within the
small view window. In such cases, we limit the generation time to
20 minutes per view. The corresponding images are labeled with
a ▲. Tab. 2 presents a breakdown of the synthesis time for our fractal
images across two GPU models.

5.1. Comparisons

Setup For our evaluation, we use a test suite of 100 randomly gener-
ated IFS fractals, following Anderson et al. [AF22]. In addition to
randomly sampling the IFS parameters, we also randomly select the
number of functions N from the range {3,10}.

Baselines We compare our approach against a wide spectrum of
existing approaches for fractal inversion or high-resolution image
synthesis.

First, we consider the recent method Learning Fractals [TCCC23].
Like our approach, this baseline uses differentiable point rendering
to optimize IFS parameters but focuses on low-resolution reconstruc-
tion within a purely gradient-based framework. Since their default
settings – 300 points and an image resolution of 32×32 – produced
unsatisfactory results, we also present results with an increased point
count of 600 and a higher image resolution of 256×256. Since the
original implementation is not specifically optimized for efficiency,
we were unable to run experiments with higher-quality settings.

Second, we evaluate two stochastic optimization approaches. Evo-
lutionary programming [NG94] optimizes a population of solutions
by randomly perturbing them with Gaussian noise to create off-
spring, and then selecting the fittest through competitive survival.
We carefully re-implemented this method. A more recent Cuckoo
search approach [QIG17], on the other hand, uses Lévy flight ran-
dom walks and employs reproductive rules inspired by the egg-
laying behavior of cuckoos. For this baseline, we adopted the code
provided by the original authors.

Further, we present best-effort results for directly regressing IFS
parameters from images using a neural network. In contrast to the ap-
proach in the seminal work [GD21], we found that a residual design
– regressing deviations from identity transformations – yielded more

2025 Authors version of paper published in Computer Graphics Forum (Eurographics 2025).
© The Authors.

https://chaotic-fractals.mpi-inf.mpg.de

A. Djeacoumar et al. / Learning Image Fractals Using Chaotic Differentiable Point Splatting 7 of 14

stable results. Training of the convolutional network is supervised
on 8000 random fractals with IFS codes sorted according to their
singular values.

Finally, to further contextualize the capabilities of our approach,
we present results from a recent single-image super-resolution
method. Specifically, we evaluate SwinIR [LCS∗21], a neural super-
resolution architecture that integrates the spatially invariant filters
of convolutional layers with Swin transformer [LLC∗21] layers, en-
abling the model to learn long-range dependencies across the image.
We train this model on 10k fractal images to upsample 1000×1000
images to a resolution of 8000× 8000 pixels, following the setup
used by the original authors.

For all IFS-based baselines, we assume a conservative number
of functions, with N = 10. To ensure fair comparisons, we utilized
tuned hyperparameters for all baselines in cases where they pro-
duced better results.

Metrics To evaluate reconstruction quality across different scales,
we synthesize 6 randomly sampled patches per test fractal, along
with the full fractal, using zoom-in factors of up to 8x. All numerical
evaluations are based on this extended set of 700 images. To assess
shape fidelity, we use the F1 score and the mean intersection over
union (IoU). Additionally, we report the standard image quality
metrics PSNR, SSIM [WBSS04], and LPIPS [ZIE∗18]. We observe
consistent inversion quality across GPU models (Nvidia A40 and
RTX 3090), with only a slight increase in optimization time with the
RTX 3090 (Tab. 2).

Results We present the quantitative results of our analysis in Tab. 3
and corresponding qualitative results in Fig. 5. Please refer to our
supplemental material for a complete gallery of qualitative results
for the entire test set across methods.

Our approach significantly outperforms all baselines. The original
version of Learning Fractals struggles to recover reasonable fractals
due to its low-resolution 32×32 canvas. When we increase the reso-
lution to 256×256 pixels – the maximum supported by our modern
hardware – this baseline can recover coarse shapes of the target frac-
tals but fails to capture finer structural details. Despite our extensive
efforts and several hours of optimization, stochastic methods using
evolutionary programming and Cuckoo search did not converge to
accurate results in our test setup. Similarly, neural network-based
regression of IFS codes from images failed to produce coherent
results, confirming previous findings [GD21] and suggesting that
generalizable solutions for the fractal inverse problem may not be
feasible at this point. As expected, the super-resolution baseline
performs well at coarser scales but ultimately produces structureless
images when zoomed in due to its limited upsampling capacity.

5.2. Additional Results

In Fig. 6 we show fractal inversion results of real images. Fig. 7
presents our reconstruction of the famous Sierpinski triangle [Sie15]
using two different values for the number of functions N. The
ground-truth fractal uses N = 3. Our reconstructions closely match
the ground truth, with only minor shifts, regardless of the N value,
provided it remains conservative. This happens because, when more
functions are provided than needed, our pipeline converges to so-

lutions where the extra functions are mapped to zero, resulting in
negligible sampling probabilities.

5.3. Ablations

Here, we analyze individual components of our method through ab-
lation studies, examining variations in the model, objective function,
and optimization routine. The results of the quantitative evaluations,
based on 50 fractals, are presented in Tab. 4, with corresponding
qualitative examples shown in Fig. 8.

Model We first explore an alternative to our SVD-based parameteri-
zation, where the affine functions fi are parameterized directly by
their matrix and vector entries (Naïve Parameterization). We found
this approach to be prone to generating non-contractive functions,
requiring us to significantly increase the regularization weight λreg
to obtain meaningful results. Second, we omit our multisampling
stage to investigate the importance of anti-aliasing in our frame-
work (w/o Multisampling). We observe that both components are
important for high-quality inversions.

Objective function We omit individual components of our objective
function to better understand their contributions to the final result.
Specifically, we omit the MIP map in LMSE, as well as the terms
LSSIM, LLPIPS, and Lreg individually. Additionally, we replace our
entire objective function with a classical alternative that minimizes
the distance between moments [VR89, RZ94]. Each term in our
objective function plays a significant role in achieving our results,
whereas the moments-based approach performs noticeably worse.

Optimizer To analyze our hybrid optimizer design, we evaluate
our method using pure gradient-based optimization (w/o Simulated
Annealing) and pure simulated annealing (w/o Gradients). Addition-
ally, we explore a gradient-based approach in which we introduce
carefully tuned Gaussian noise to the gradients in each optimization
iteration to help escape local minima (Noisy Gradients). Simulated
annealing clearly aids in capturing the global shape, whereas a so-
lution without gradients fails to converge to a meaningful result.
Adding noise to the gradients provides only marginal improvement
over a pure gradient-based solution.

5.4. Limitations and Discussion

While our analysis shows that our approach marks the new state
of the art in fractal inversion, it is important to acknowledge some
limitations.

Our results do not perfectly align with the ground truth; rather,
the generated details only statistically resemble the expected pat-
terns. A single global solution exists and the extremely complex
optimization landscape—characterized by numerous local minima
and plateaus—makes perfect reconstruction of the ground truth chal-
lenging. At present, our hybrid optimization strategy seems best
suited to effectively navigate this intricate space regardless of the
initialization.

Our system, constrained by its analytical approach, always results
in perfectly self-similar structures. However, the self-similarity in
natural images typically extends over only a few scales and is gener-
ally approximate due to the repeated influence of various physical

2025 Authors version of paper published in Computer Graphics Forum (Eurographics 2025).
© The Authors.

8 of 14 A. Djeacoumar et al. / Learning Image Fractals Using Chaotic Differentiable Point Splatting
Le

ar
ni

ng
 F

ra
ct

al
s

(3
2

x
32

)
1x 64x 1x 64x 1x 64x

Le
ar

ni
ng

 F
ra

ct
al

s
(2

56
 x

 2
56

)
Ev

ol
ut

io
na

ry
C

uc
ko

o
Se

ar
ch

N
eu

ra
l R

eg
re

ss
io

n
Su

pe
r-r

es
ol

ut
io

n
O

ur
s

In
pu

t /

G
ro

un
d

Tr
ut

h

Figure 5: Qualitative fractal inversion results for various methods (rows). For each instance (columns), the full fractal is shown on the left,
with a 64x zoomed-in view on the right. The bottom row presents the input image Iref used for all methods (left) next to a zoomed-in view of
the ground-truth fractal (right). Note that the zoomed-in views are consistent across rows. Images marked with a ▲ denote views that do not
contain the full point count (see Sec. 5). More visuals can be found in our supplemental materials. For continuous zoom-in visuals, please refer
to our supplemental video.

2025 Authors version of paper published in Computer Graphics Forum (Eurographics 2025).
© The Authors.

A. Djeacoumar et al. / Learning Image Fractals Using Chaotic Differentiable Point Splatting 9 of 14

Table 3: Quantitative evaluation of our method compared to previous work. We report shape-based (F1, IoU) and image-based (PSNR,
SSIM, LPIPS) quality metrics alongside the time it takes to run each method on a single GPU. We include five fractal-based baselines and a
pixel-based super-resolution method. Unlike all other approaches, including ours, the super-resolution baseline is restricted to a maximum
zoom-in capability of 8x.

Method F1↑ IoU↑ PSNR↑ SSIM↑ LPIPS↓ Time

Super-resolution [LCS∗21]* .917 .854 16.30 .714 .239 12 sec

Learning Fractals (32×32) [TCCC23] .121 .080 6.59 .436 .656 8 min
Learning Fractals (256×256) [TCCC23] .553 .430 6.78 .348 .648 35 min
Evolutionary [NG94] .621 .492 6.49 .289 .745 180 min
Cuckoo Search [QIG17] .490 .351 3.43 .140 .825 540 min
Neural Regression [GD21]* .161 .106 5.33 .358 .709 16 ms
Ours .691 .572 8.91 .449 .428 55 min
* Generalizable method that requires pre-training.

1x 9x 32x 103x

Input Image Ours
1x 7x 31x 104x

Figure 6: Inversion results for real images. Our representation enables infinite zoom-ins, continuously generating self-similar details at any
scale while capturing intricate structural patterns. In contrast, natural structures exhibit self-similarity only within a limited scale range.

Ground Truth (N = 3) Ours (N = 3) Ours (N = 10)

Figure 7: The Sierpinski triangle (left) alongside our reconstruc-
tions using different function counts N (center and right). Our
reconstructions closely match the ground truth, with only minor
misalignments, visible in the insets, independent of N.

forces acting on structures [Man82]. For instance, the fern in Fig. 2
exhibits about three scales of approximate self-similarity, while the
formation of snow crystals, a subject of study for decades [Lib05],
continues to present challenges. In such cases, our method may
fail to find functions that represent the observed approximate self-
similarity and hence inaccurately captures the ground truth (Fig. 6).
Using fractals, this discrepancy appears to be the trade-off for achiev-
ing arbitrary-scale image generation, as evidenced by our significant
zoom-ins.

For future work, we envision a fractal system that incorporates
more expressive functions as building blocks [CLV∗95] – potentially
parameterized by neural networks or enhanced by the injection of
physical forces. Such an approach could enable better representa-
tion and simulation of complex self-similar geometries, while also
achieving generative capabilities across scales.

2025 Authors version of paper published in Computer Graphics Forum (Eurographics 2025).
© The Authors.

10 of 14 A. Djeacoumar et al. / Learning Image Fractals Using Chaotic Differentiable Point Splatting

A minor technical limitation of our approach is the fixed num-
ber of functions used in our model. A potential avenue for future
work is the explicit optimization of sampling probabilities to remove
this restriction, which likely requires an appropriate parameteriza-
tion [JGP17].

6. Conclusion

We proposed a novel approach to solving the fractal inverse prob-
lem, which includes a differentiable forward model that implements
the chaos game based on Iterated Function Systems and a point
splatting module that renders the generated fractal point set into an
image. Notably, we demonstrated that combining large-scale frac-
tal generation with high-quality rendering, along with a hybrid of
gradient-based and stochastic optimization, leads to state-of-the-art
results in inverting image fractals. This was validated through ex-
tensive comparisons with a diverse range of classical and modern
methods.

We envision fractals as optimizable graphics primitives that, due
to their point-based nature, can seamlessly integrate with recent
advancements in Gaussian scene representations. Fractals can serve
as a fundamental tool for representing content across a wide range
of scales – capabilities that are challenging to achieve with classi-
cal (e.g., meshes) or neural representations (e.g., neural radiance
fields [MST∗20]). To fully realize this potential, future research
must extend robust fractal optimization frameworks to operate in
3D [Nor82, SK24] and incorporate appearance [BN24]. These ad-
vancements will unlock new opportunities for fractals to contribute
to the evolving landscape of scene representations and image syn-
thesis.

References

[AF22] ANDERSON C., FARRELL R.: Improving fractal pre-training.
In IEEE/CVF Winter Conference on Applications of Computer Vision
(WACV) (2022).

[Ban91] BANDT C.: Self-similar sets 5. Integer matrices and fractal tilings
of Rn. Proceedings of the American Mathematical Society 112, 2 (1991),
549–562.

[Bar88] BARNSLEY M.: Fractals Everywhere. Academic Press, 1988.

[BD85] BARNSLEY M. F., DEMKO S.: Iterated function systems and
the global construction of fractals. Proceedings of the Royal Society
of London. A. Mathematical and Physical Sciences 399, 1817 (1985),
243–275.

[BDM18] BROSSE N., DURMUS A., MOULINES E.: The promises and
pitfalls of stochastic gradient langevin dynamics. In Advances in Neural
Information Processing Systems (NeurIPS) (2018).

[BdR17] BLOEM P., DE ROOIJ S.: An expectation-maximization algo-
rithm for the fractal inverse problem. arXiv preprint arXiv:1706.03149
(2017).

[BEHL86] BARNSLEY M. F., ERVIN V., HARDIN D., LANCASTER J.:
Solution of an inverse problem for fractals and other sets. Proceedings of
the National Academy of Sciences 83, 7 (1986), 1975–1977.

[Ber97] BERKNER K.: A wavelet-based solution to the inverse problem
for fractal interpolation functions. In Fractals in Engineering: From
Theory to Industrial Applications. Springer, 1997, pp. 81–92.

[BGF∗23] BELHE Y., GHARBI M., FISHER M., GEORGIEV I., RA-
MAMOORTHI R., LI T.-M.: Discontinuity-aware 2d neural fields. ACM
Transactions on Graphics 42, 6 (2023).

[BH93] BARNSLEY M. F., HURD L. P.: Fractal Image Compression.
Peters A. K., 1993.

[BJM∗88] BARNSLEY M. F., JACQUIN A., MALASSENET F., REUTER
L., SLOAN A. D.: Harnessing chaos for image synthesis. In ACM
SIGGRAPH Conference (1988).

[BKK19] BAI S., KOLTER J. Z., KOLTUN V.: Deep equilibrium models.
Advances in Neural Information Processing Systems (NeurIPS) (2019).

[BKSI19] BELL-KLIGLER S., SHOCHER A., IRANI M.: Blind super-
resolution kernel estimation using an internal-GAN. In Advances in
Neural Information Processing Systems (NeurIPS) (2019).

[BN24] BANNISTER J. J., NOWROUZEZAHRAI D.: Learnable fractal
flames. arXiv preprint arXiv:2406.09328 (2024).

[Bur81] BURT P. J.: Fast filter transform for image processing. Computer
Graphics and Image Processing 16, 1 (1981), 20–51.

[Car80] CARPENTER L. C.: Computer rendering of fractal curves and
surfaces. In ACM SIGGRAPH Conference (1980).

[CBG∗17] CISSE M., BOJANOWSKI P., GRAVE E., DAUPHIN Y.,
USUNIER N.: Parseval networks: Improving robustness to adversar-
ial examples. In International Conference on Machine Learning (ICML)
(2017).

[CLRS00] COLLET P., LUTTON E., RAYNAL F., SCHOENAUER M.: Po-
lar IFS + Parisian genetic programming=Efficient IFS inverse problem
solving. Genetic Programming and Evolvable Machines 1, 4 (2000),
339–361.

[CLV∗95] CRETIN G., LUTTON E., VÉHEL J. L., GLEVAREC P., ROLL
C.: Mixed ifs: Resolution of the inverse problem using genetic program-
ming. In European Conference on Artificial Evolution (AE) (1995).

[CLW21] CHEN Y., LIU S., WANG X.: Learning continuous image repre-
sentation with local implicit image function. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR) (2021).

[CZHN22] CHEN B., ZHI T., HEBERT M., NARASIMHAN S. G.: Learn-
ing continuous implicit representation for near-periodic patterns. In
European Conference on Computer Vision (ECCV) (2022).

[DHN85] DEMKO S., HODGES L., NAYLOR B.: Construction of fractal
objects with iterated function systems. In ACM SIGGRAPH Conference
(1985).

[dSNLV21] DA SILVA V., NOVELLO T., LOPES H., VELHO L.: Real-time
rendering of complex fractals. In Ray Tracing Gems II: Next Genera-
tion Real-Time Rendering with DXR, Vulkan, and OptiX. Apress, 2021,
pp. 529–544.

[Ebe02] EBERT D.: Texturing & Modeling: A Procedural Approach. Mor-
gan Kaufmann, 2002.

[Elt87] ELTON J. H.: An ergodic theorem for iterated maps. Ergodic
Theory and Dynamical Systems 7, 4 (1987), 481–488.

[Fat01] FATHAUER R. W.: Fractal tilings based on kite-and dart-shaped
prototiles. Computers & Graphics 25, 2 (2001), 323–331.

[Fis94] FISHER Y.: Fractal image compression. Fractals 2, 3 (1994),
347–361.

[FSWK20] FATHONY R., SAHU A. K., WILLMOTT D., KOLTER J. Z.:
Multiplicative filter networks. In International Conference on Learning
Representations (ICLR) (2020).

[FV94] FORTE B., VCSCAY E. R.: Solving the inverse problem for
function/image approximation using iterated function systems. Fractals
2, 3 (1994), 325–334.

[GBI09] GLASNER D., BAGON S., IRANI M.: Super-resolution from
a single image. In IEEE International Conference on Computer Vision
(ICCV) (2009).

[GCI00] GUTIÉRREZ J. M., COFIÑO A. S., IVANISSEVICH M. L.: An
hybrid evolutive-genetic strategy for the inverse fractal problem of IFS
models. In Ibero-American Conference on Artificial Intelligence (IB-
ERAMIA) (2000).

2025 Authors version of paper published in Computer Graphics Forum (Eurographics 2025).
© The Authors.

A. Djeacoumar et al. / Learning Image Fractals Using Chaotic Differentiable Point Splatting 11 of 14

Table 4: Ablations.

Component Ablation F1↑ IoU↑ PSNR↑ SSIM↑ LPIPS↓

Model
Naïve Parameterization .583 .467 9.12 .481 .431
w/o Multisampling .561 .445 9.16 .481 .441

Objective Fct.

w/o MIP map .363 .286 9.08 .525 .512
w/o LSSIM .611 .483 8.41 .436 .454
w/o LLPIPS .544 .440 8.86 .466 .511
w/o Lreg .596 .474 8.66 .449 .476
Moments .542 .408 4.17 .170 .818

Optimizer
w/o Simulated Annealing .594 .468 8.72 .459 .441
w/o Gradients .496 .377 7.14 .296 .736
Noisy Gradients .578 .455 8.93 .471 .442

Ours .611 .488 9.23 .482 .415

M
od

el

Ground Truth Ours Naïve Parameterization w/o Multisampling

O
bj

ec
tiv

e
Fu

nc
tio

n

Ground Truth Ours w/o MIP map

O
pt

im
iz

er

Ground Truth Ours w/o Simulated Annealing w/o Gradients Noisy Gradients

Momentsw/o w/o w/o

Figure 8: A qualitative overview of our ablational studies. We analyze different variations of our method in terms of the model (first row), the
objective function (second row), and the optimizer (last row).

2025 Authors version of paper published in Computer Graphics Forum (Eurographics 2025).
© The Authors.

12 of 14 A. Djeacoumar et al. / Learning Image Fractals Using Chaotic Differentiable Point Splatting

[GD98] GROSSMAN J. P., DALLY W. J.: Point sample rendering. In
Eurographics Workshop on Rendering Techniques (1998).

[GD21] GRAHAM L., DEMERS M.: Applying neural networks to a fractal
inverse problem. In International Conference on Applied Mathematics,
Modeling and Computational Science (AMMCS) (2021).

[GHYZ20] GUO Y., HAŠAN M., YAN L., ZHAO S.: A bayesian infer-
ence framework for procedural material parameter estimation. Computer
Graphics Forum 39, 7 (2020), 255–266.

[GI18] GÁLVEZ A., IGLESIAS A.: Modified memetic self-adaptive firefly
algorithm for 2D fractal image reconstruction. In IEEE International
Computer Software and Applications Conference (COMPSAC) (2018).

[GID∗21] GÁLVEZ A., IGLESIAS A., DÍAZ J. A., FISTER I., LÓPEZ
J., FISTER JR I.: Modified OFS-RDS bat algorithm for ifs encoding
of bitmap fractal binary images. Advanced Engineering Informatics 47
(2021).

[GP11] GROSS M., PFISTER H.: Point-Based Graphics. Elsevier, 2011.

[GSV∗14] GILET G., SAUVAGE B., VANHOEY K., DISCHLER J.-M.,
GHAZANFARPOUR D.: Local random-phase noise for procedural textur-
ing. ACM Transactions on Graphics 33, 6 (2014).

[HBG∗95] HAVLIN S., BULDYREV S., GOLDBERGER A., MANTEGNA
R., OSSADNIK S., PENG C.-K., SIMONS M., STANLEY H.: Fractals in
biology and medicine. Chaos, Solitons & Fractals 6 (1995), 171–201.

[HD91] HART J. C., DEFANTI T. A.: Efficient antialiased rendering of
3-D linear fractals. In ACM SIGGRAPH Conference (1991).

[HDR19] HU Y., DORSEY J., RUSHMEIER H.: A novel framework for
inverse procedural texture modeling. ACM Transactions on Graphics 38,
6 (2019).

[HHD∗22] HU Y., HE C., DESCHAINTRE V., DORSEY J., RUSHMEIER
H.: An inverse procedural modeling pipeline for svbrdf maps. ACM
Transactions on Graphics 41, 2 (2022).

[HMK∗19] HALLADJIAN S., MIAO H., KOUŘIL D., GRÖLLER M. E.,
VIOLA I., ISENBERG T.: Scale trotter: Illustrative visual travels across
negative scales. IEEE Transactions on Visualization and Computer Graph-
ics 26, 1 (2019), 654–664.

[HN18] HEITZ E., NEYRET F.: High-performance by-example noise
using a histogram-preserving blending operator. Proceedings of the ACM
on Computer Graphics and Interactive Techniques 1, 2 (2018).

[HSK89] HART J. C., SANDIN D. J., KAUFFMAN L. H.: Ray tracing
deterministic 3-D fractals. In ACM SIGGRAPH Conference (1989).

[Hut81] HUTCHINSON J. E.: Fractals and self similarity. Indiana Univer-
sity Mathematics Journal 30, 5 (1981), 713–747.

[Iij59] IIJIMA T.: Basic theory of pattern observation. Papers of the
Technical Group on Automata and Automatic Control (1959).

[Jac92] JACQUIN A.: Image coding based on a fractal theory of iter-
ated contractive image transformations. IEEE Transactions on Image
Processing 1, 1 (1992), 18–30.

[JGP17] JANG E., GU S., POOLE B.: Categorical reparameterization with
gumbel-softmax. In International Conference on Learning Representa-
tions (ICLR) (2017).

[Jul18] JULIA G.: Mémoire sur l’itération des fonctions rationnelles.
Journal de mathématiques pures et appliquées 1 (1918), 47–245.

[KB15] KINGMA D. P., BA J.: Adam: A method for stochastic optimiza-
tion. In International Conference on Learning Representations (ICLR)
(2015).

[Kes82] KESHNER M. S.: 1/f noise. Proceedings of the IEEE 70, 3 (1982),
212–218.

[KGJV83] KIRKPATRICK S., GELATT JR C. D., VECCHI M. P.: Opti-
mization by simulated annealing. Science 220, 4598 (1983), 671–680.

[KHE∗10] KLASHED S., HEMINGSSON P., EMMART C., COOPER M.,
YNNERMAN A.: Uniview - visualizing the universe. In Eurographics
Areas Papers (2010).

[Kim15] KIM T.: Quaternion Julia set shape optimization. Computer
Graphics Forum 34, 5 (2015), 167–176.

[KKLD23] KERBL B., KOPANAS G., LEIMKÜHLER T., DRETTAKIS
G.: 3D Gaussian splatting for real-time radiance field rendering. ACM
Transactions on Graphics 42, 4 (2023).

[KOM∗20] KATAOKA H., OKAYASU K., MATSUMOTO A., YAMAGATA
E., YAMADA R., INOUE N., NAKAMURA A., SATOH Y.: Pre-training
without natural images. In Asian Conference on Computer Vision (ACCV)
(2020).

[KRS∗24] KHERADMAND S., REBAIN D., SHARMA G., SUN W.,
TSENG J., ISACK H., KAR A., TAGLIASACCHI A., YI K. M.: 3D
Gaussian splatting as Markov chain Monte Carlo. In Advances in Neural
Information Processing Systems (NeurIPS) (2024).

[KRWM22] KARNEWAR A., RITSCHEL T., WANG O., MITRA N.: 3in-
GAN: Learning a 3D generative model from images of a self-similar
scene. In International Conference on 3D Vision (3DV) (2022).

[Lan95] LANKHORST M. M.: Iterated function systems optimization with
genetic algorithms. Tech. Rep. CS-R 9501, University of Groningen,
Department of Computing Science, 1995.

[LCS∗21] LIANG J., CAO J., SUN G., ZHANG K., VAN GOOL L., TIMO-
FTE R.: Swinir: Image restoration using swin transformer. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR) (2021).

[LFS21] LICORISH C., FARAJ N., SUMMA B.: Adaptive compositing
and navigation of variable resolution images. Computer Graphics Forum
40, 1 (2021), 138–150.

[LHOK∗10] LIU Y., HEL-OR H., KAPLAN C. S., VAN GOOL L., ET AL.:
Computational symmetry in computer vision and computer graphics.
Foundations and Trends in Computer Graphics and Vision 5, 1–2 (2010),
1–195.

[Li19] LI T.-M.: Differentiable visual computing. arXiv preprint
arXiv:1904.12228 (2019).

[Lib05] LIBBRECHT K. G.: The physics of snow crystals. Reports on
progress in physics 68, 4 (2005), 855.

[Lin68] LINDENMAYER A.: Mathematical models for cellular interactions
in development I. Filaments with one-sided inputs. Journal of Theoretical
Biology 18, 3 (1968), 280–299.

[LLC∗21] LIU Z., LIN Y., CAO Y., HU H., WEI Y., ZHANG Z., LIN S.,
GUO B.: Swin transformer: Hierarchical vision transformer using shifted
windows. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) (2021).

[LP00] LEFEBVRE L., POULIN P.: Analysis and synthesis of structural
textures. In Graphics Interface Conference (GI) (2000).

[LSS∗17] LUKÁČ M., SỲKORA D., SUNKAVALLI K., SHECHTMAN E.,
JAMRIŠKA O., CARR N., PAJDLA T.: Nautilus: Recovering regional
symmetry transformations for image editing. ACM Transactions on
Graphics 36, 4 (2017).

[LVL93] LEVY-VEHEL J., LUTTON E.: Optimization of fractal functions
using genetic algorithms. In IFIP Working Conference on Fractals in the
Natural and Applied Sciences (1993).

[LVVPW22] LINDELL D. B., VAN VEEN D., PARK J. J., WETZSTEIN
G.: BACON: Band-limited coordinate networks for multiscale scene
representation. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) (2022).

[LYMF19] LI J., YUAN Y., MEI K., FANG F.: Lightweight and accu-
rate recursive fractal network for image super-resolution. In IEEE/CVF
International Conference on Computer Vision (ICCV) (2019).

[LZ21] LASSNER C., ZOLLHOFER M.: Pulsar: Efficient sphere-based
neural rendering. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) (2021).

[MAAB∗17] MOHAMMED H., AL-AWAMI A. K., BEYER J., CALI C.,
MAGISTRETTI P., PFISTER H., HADWIGER M.: Abstractocyte: A vi-
sual tool for exploring nanoscale astroglial cells. IEEE Transactions on
Visualization and Computer Graphics 24, 1 (2017), 853–861.

2025 Authors version of paper published in Computer Graphics Forum (Eurographics 2025).
© The Authors.

A. Djeacoumar et al. / Learning Image Fractals Using Chaotic Differentiable Point Splatting 13 of 14

[Man80] MANDELBROT B. B.: Fractal aspects of the iteration of z→λz(1-
z) for complex λ and z. Annals of the New York Academy of Sciences 357,
1 (1980), 249–259.

[Man82] MANDELBROT B. B.: The Fractal Geometry of Nature. W. H.
Freeman and Co., 1982.

[Man97] MANDELBROT B. B.: Fractals and Scaling in Finance. Springer
Science & Business Media, 1997.

[Mar10] MARTYN T.: Realistic rendering 3D IFS fractals in real-time
with graphics accelerators. Computers & Graphics 34, 2 (2010), 167–175.

[MEG04] MANDELBROT B. B., EVERTSZ C. J., GUTZWILLER M. C.:
Fractals and Chaos: The Mandelbrot Set and Beyond. Springer, 2004.

[Mer23] MERRELL P.: Example-based procedural modeling using graph
grammars. ACM Transactions on Graphics 42, 4 (2023).

[MESK22] MÜLLER T., EVANS A., SCHIED C., KELLER A.: Instant
neural graphics primitives with a multiresolution hash encoding. ACM
Transactions on Graphics 41, 4 (2022).

[MI14] MICHAELI T., IRANI M.: Blind deblurring using internal patch
recurrence. In European Conference on Computer Vision (ECCV) (2014).

[MNT∗24] MUJKANOVIC F., NSAMPI N. E., THEOBALT C., SEIDEL
H.-P., LEIMKÜHLER T.: Neural gaussian scale-space fields. ACM
Transactions on Graphics 43, 4 (2024).

[MP98] MELNIK O., POLLACK J.: A gradient descent method for a
neural fractal memory. In IEEE International Joint Conference on Neural
Networks (IJCNN) (1998).

[MRF∗23] MOSER B. B., RAUE F., FROLOV S., PALACIO S., HEES J.,
DENGEL A.: Hitchhiker’s guide to super-resolution: Introduction and
recent advances. IEEE Transactions on Pattern Analysis and Machine
Intelligence 45, 8 (2023), 9862–9882.

[MST∗20] MILDENHALL B., SRINIVASAN P. P., TANCIK M., BARRON
J. T., RAMAMOORTHI R., NG R.: Nerf: Representing scenes as neural
radiance fields for view synthesis. In European Conference on Computer
Vision (ECCV) (2020).

[MVN68] MANDELBROT B. B., VAN NESS J. W.: Fractional brownian
motions, fractional noises and applications. SIAM Review 10, 4 (1968),
422–437.

[NG94] NETTLETON D. J., GARIGLIANO R.: Evolutionary algorithms
and a fractal inverse problem. Biosystems 33, 3 (1994), 221–231.

[Nor82] NORTON A.: Generation and display of geometric fractals in 3-D.
ACM SIGGRAPH Computer Graphics 16, 3 (1982), 61–67.

[OCNG21] OUYANG P., CHUNG K. W., NICOLAS A., GDAWIEC K.:
Self-similar fractal drawings inspired by MC Escher’s print square limit.
ACM Transactions on Graphics 40, 3 (2021).

[PD84] PORTER T., DUFF T.: Compositing digital images. In ACM
SIGGRAPH Conference (1984).

[Pen84] PENTLAND A. P.: Fractal-based description of natural scenes.
IEEE Transactions on Pattern Analysis and Machine Intelligence 6, 6
(1984), 661–674.

[PGC∗17] PASZKE A., GROSS S., CHINTALA S., CHANAN G., YANG
E., DEVITO Z., LIN Z., DESMAISON A., ANTIGA L., LERER A.:
Automatic differentiation in pytorch. In NeurIPS Workshop on Autodiff
(2017).

[PJSF04] PEITGEN H.-O., JÜRGENS H., SAUPE D., FEIGENBAUM M. J.:
Chaos and Fractals: New Frontiers of Science. Springer, 2004.

[PL12] PRUSINKIEWICZ P., LINDENMAYER A.: The algorithmic beauty
of plants. Springer Science & Business Media, 2012.

[PNS∗22] PAZ H., NOVELLO T., SILVA V., SCHARDONG G., SCHIRMER
L., CHAGAS F., LOPES H., VELHO L.: Multiresolution neural networks
for imaging. In Conference on Graphics, Patterns and Images (SIBGRAPI)
(2022).

[PXM∗22] POLI M., XU W., MASSAROLI S., MENG C., KIM K., ER-
MON S.: Self-similarity priors: Neural collages as differentiable fractal

representations. Advances in Neural Information Processing Systems
(NeurIPS) (2022).

[QIG17] QUIRCE J., IGLESIAS A., GÁLVEZ A.: Cuckoo search algorithm
approach for the IFS inverse problem of 2D binary fractal images. In
Advances in Swarm Intelligence (ICSI) (2017).

[RHD08] REDIES C., HASENSTEIN J., DENZLER J.: Fractal-like image
statistics in visual art: similarity to natural scenes. Spatial Vision 21, 1–2
(2008), 137—-148.

[RS80] ROZENBERG G., SALOMAA A.: The Mathematical Theory of L
Systems. Academic Press, 1980.

[RZ94] RINALDO R., ZAKHOR A.: Inverse and approximation problem
for two-dimensional fractal sets. IEEE Transactions on Image Processing
3, 6 (1994), 802–820.

[SB06] SARAFOPOULOS A., BUXTON B.: Resolution of the inverse
problem for iterated function systems using evolutionary algorithms. In
IEEE International Conference on Evolutionary Computation (2006).

[SBII19] SHOCHER A., BAGON S., ISOLA P., IRANI M.: InGAN: Cap-
turing and retargeting the "DNA" of a natural image. In IEEE/CVF
International Conference on Computer Vision (ICCV) (2019).

[SCI18] SHOCHER A., COHEN N., IRANI M.: “Zero-shot” super-
resolution using deep internal learning. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) (2018).

[Sco24] SCOTT C. B.: Differentiable iterated function systems. In ICML
Workshop on Differentiable Almost Everything: Differentiable Relaxations,
Algorithms, Operators, and Simulators (2024).

[SDG∗93] STRUZIK Z. R., DOOIJES E., GROEN F., ET AL.: The solution
of the inverse fractal problem with the help of wavelet decomposition. In
Fractals in Natural Sciences (1993).

[SDM19] SHAHAM T. R., DEKEL T., MICHAELI T.: SinGAN: Learning a
generative model from a single natural image. In IEEE/CVF International
Conference on Computer Vision (ICCV) (2019).

[SHM05] SONG C., HAVLIN S., MAKSE H. A.: Self-similarity of com-
plex networks. Nature 433, 7024 (2005), 392–395.

[SI07] SHECHTMAN E., IRANI M.: Matching local self-similarities across
images and videos. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2007).

[Sie15] SIERPINSKI W.: Sur une courbe dont tout point est un point de
ramification. CR Acad. Sci. 160 (1915), 302–305.

[SK24] SCHOR A., KIM T.: Into the portal: Directable fractal self-
similarity. In ACM SIGGRAPH Conference (2024).

[SLH∗20] SHI L., LI B., HAŠAN M., SUNKAVALLI K., BOUBEKEUR
T., MECH R., MATUSIK W.: Match: Differentiable material graphs for
procedural material capture. ACM Transactions on Graphics 39, 6 (2020).

[SRDT01] SHLYAKHTER I., ROZENOER M., DORSEY J., TELLER S.:
Reconstructing 3D tree models from instrumented photographs. IEEE
Computer Graphics and Applications 21, 3 (2001), 53–61.

[Sta91] STARK J.: Iterated function systems as neural networks. Neural
Networks 4, 5 (1991), 679–690.

[STB∗22] SARAGADAM V., TAN J., BALAKRISHNAN G., BARANIUK
R. G., VEERARAGHAVAN A.: MINER: Multiscale implicit neural repre-
sentation. In European Conference on Computer Vision (ECCV) (2022).

[SZR∗23] SPIELBERG A., ZHONG F., REMATAS K., JATAVALLABHULA
K. M., OZTIRELI C., LI T.-M., NOWROUZEZAHRAI D.: Differentiable
visual computing for inverse problems and machine learning. Nature
Machine Intelligence 5, 11 (2023), 1189–1199.

[TCCC23] TU C.-H., CHEN H.-Y., CARLYN D., CHAO W.-L.: Learning
fractals by gradient descent. In AAAI Conference on Artificial Intelligence
(2023).

[TGSC24] TZATHAS P., GAILLETON B., STEER P., CORDONNIER G.:
Physically-based analytical erosion for fast terrain generation. Computer
Graphics Forum 43, 2 (2024).

2025 Authors version of paper published in Computer Graphics Forum (Eurographics 2025).
© The Authors.

14 of 14 A. Djeacoumar et al. / Learning Image Fractals Using Chaotic Differentiable Point Splatting

[TLW∗19] TAO W., LIU X., WANG Y., BATTLE L., DEMIRALP Ç.,
CHANG R., STONEBRAKER M.: Kyrix: Interactive pan/zoom visualiza-
tions at scale. Computer Graphics Forum 38, 3 (2019), 529–540.

[TPRC00] TURIEL A., PARGA N., RUDERMAN D. L., CRONIN T. W.:
Multiscaling and information content of natural color images. Physical
Review E 62, 1 (2000), 1138–1148.

[Tur97] TURCOTTE D. L.: Fractals and Chaos in Geology and Geo-
physics. Cambridge University Press, 1997.

[VR89] VRSCAY E. R., ROEHRIG C. J.: Iterated function systems and
the inverse problem of fractal construction using moments. In Conference
on Computers and Mathematics (1989).

[Vrs91] VRSCAY E. R.: Iterated function systems: theory, applications
and the inverse problem. In Fractal Geometry and Analysis. Springer,
1991, pp. 405–468.

[VS99] VRSCAY E. R., SAUPE D.: Can one break the “collage barrier”
in fractal image coding? In Fractals: Theory and Applications in Engi-
neering. Springer, 1999, pp. 307–323.

[VSLD13] VANHOEY K., SAUVAGE B., LARUE F., DISCHLER J.-M.:
On-the-fly multi-scale infinite texturing from example. ACM Transactions
on Graphics 32, 6 (2013).

[WBSS04] WANG Z., BOVIK A. C., SHEIKH H. R., SIMONCELLI E. P.:
Image quality assessment: From error visibility to structural similarity.
IEEE Transactions on Image Processing 13, 4 (2004), 600–612.

[WDJ∗24] WOLSKI K., DJEACOUMAR A., JAVANMARDI A., SEIDEL H.-
P., THEOBALT C., CORDNONNIER G., MYSZKOWSKI K., DRETTAKIS
G., PAN X., LEIMKÜHLER T.: Learning images across scales using
adversarial trainings. ACM Transactions on Graphics 43, 4 (2024).

[WGSJ20] WILES O., GKIOXARI G., SZELISKI R., JOHNSON J.: Synsin:
End-to-end view synthesis from a single image. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR) (2020).

[Wil83] WILLIAMS L.: Pyramidal parametrics. In ACM SIGGRAPH
Conference (1983).

[Wit87] WITKIN A. P.: Scale-space filtering. In Readings in Computer
Vision. Elsevier, 1987, pp. 329–332.

[WWSR03] WONKA P., WIMMER M., SILLION F., RIBARSKY W.: In-
stant architecture. ACM Transactions on Graphics 22, 3 (2003), 669–677.

[YSW∗19] YIFAN W., SERENA F., WU S., ÖZTIRELI C., SORKINE-
HORNUNG O.: Differentiable surface splatting for point-based geometry
processing. ACM Transactions on Graphics 38, 6 (2019).

[ZI11] ZONTAK M., IRANI M.: Internal statistics of a single natural image.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(2011).

[ZIE∗18] ZHANG R., ISOLA P., EFROS A. A., SHECHTMAN E., WANG
O.: The unreasonable effectiveness of deep features as a perceptual metric.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) (2018).

[ZPVBG01] ZWICKER M., PFISTER H., VAN BAAR J., GROSS M.: Sur-
face splatting. In ACM SIGGRAPH Conference (2001), pp. 371–378.

[ZWSW23] ZHANG Y., WU S., SNAVELY N., WU J.: Seeing a rose in
five thousand ways. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) (2023).

[ZZB∗18] ZHOU Y., ZHU Z., BAI X., LISCHINSKI D., COHEN-OR D.,
HUANG H.: Non-stationary texture synthesis by adversarial expansion.
ACM Transactions on Graphics 37, 4 (2018).

Appendix A: Pseudocode

We provide pseudocode of our optimization algorithm in Alg. 1.

Algorithm 1 Fractal Code Optimization
Iref : Input Image
b : Batch Size of the Fractal Point Generator
θ : Optimizable Fractal Parameters

θ← InitializeParameters() ▷ Uniform Random
i← 0 ▷ Iteration Count
while not converged do

τ← LinearAnneal(i) ▷ Temperature
P ← GENERATEFRACTALPOINTS(θ,b)
I← RENDER(P)
L←Loss(I, Iref,θ) ▷ Loss : Eq. 4
θ← ADAM(∇θL) ▷ Backprop & Step
if DoHybridOptimization(i) then ▷ Hybrid Optimization

θcurr← θ

Lcurr←MSE(I, Iref) ▷ Current Energy
for j← 0 to 10 do

∆θcand←N (0, τ/5)

θcand← θcurr +∆θcand ▷ Sample Neighbour
P ← GENERATEFRACTALPOINTS(θ,b)
I←RENDER(P)
Lcand←MSE(I, Iref) ▷ Candidate Energy

p(θcand)← AcceptanceCriteria(Lcand,Lcurr,τ) ▷ Eq. 7

if Lcand < Lcurr or Random() < p(θcand) then
θcurr← θcand
Lcurr←Lcand

end if
end for
θ← θcurr
Reset ADAM momentum

end if
end while

function GENERATEFRACTALPOINTS(θ,b) ▷ Sec. 4.1
x0← SampleRandomPoints(b)
G← ConstructFractalPointGenerator(θ,b)
P ′← G(x0)

P ← RemoveInitPoints() ▷ Warm-Up (Sec. 4.4)
return P

end function

function RENDER(P) ▷ Sec. 4.2
I′←R(P) ▷ Differentiable Rasterization
I← SuperSample(I′) ▷ Supersampling
return I

end function

2025 Authors version of paper published in Computer Graphics Forum (Eurographics 2025).
© The Authors.

